Thermal Roof     Thermal Roof
©HTflux Engineering GmbH 2020

While thermal bridges deliver a severe hit to the overall performance of an assembly, thermal breaks using continuous insulation can help mitigate the damage.

Top Resource:

See Thermal Insulation for additional resources.

Tools & Education

Thermal Bridging: Small Details with a Large Impact

Mitigating thermal bridges in building envelopes is a major new thrust for improving the thermal performance of buildings. This presentation explains the types of thermal bridges, their impacts, how to account for them, and practical ways to address them with efficient detailing and insulation strategies, including continuous insulation. 

Thermal Bridging in Building Thermal Envelope Assemblies: Repetitive Metal Penetrations Presentation

Discusses types of thermal bridges and their impacts as well as repetitive metal penetrations for cladding and component attachments. 

Break it, or Lose it: Thermal Bridging in Building Envelopes

Details and information on the use of CI to avoid thermal bridges

Thermal Performance of Façades

This investigation seeks to quantify the effects of thermal bridging in commercial facades and then propose alternative solutions to improve performance by comparing infrared images of recently completed buildings to theoretical models. 

Video: Thermal Bridging & Steel Studs

Watch Joe Lstiburek, Ph.D., P.Eng, talk about insulation and steel framing.

Best Practices

Energy Code Math Lesson: Why an R-25 Wall is Not Equal to a R-20+5ci

When a builder comes across an R20 + 5ci insulation requirement, it can be easy to think: R20 + 5ci? Why not just use R-25 in the cavity? This guide goes through the math comparing R20 + 5ci and R25 walls.

Continuous Insulation Solves Energy Code Math Problem

Continuous insulation (ci) and cavity insulation products are both sold with R-value ratings, but the way these two products are used in wall construction means they do not have the same effectiveness. 

Thermal Bridging Solutions: Minimizing Structural Steel’s Impact

This supplement to Modern Steel Construction is the product of the joint Structural Engineering Institute (SEI) /American Institute of Steel Construction (AISC) Thermal Steel Bridging Task Committee, in conjunction with the SEI’s Sustainability Committee’s Thermal Bridging Working Group.

Practical Research

Repetitive Metal Penetrations Research Report

Provides data to help better understand the implications and support an equitable, performance-based treatment of thermal bridges for common building assembly conditions and variations.  

Development of Thermal Bridging Factors for Use in Energy Models

This work provides practical guidelines for the mitigation and reduction of thermal bridge problems in existing and new Army facilities. A wide range of building types was investigated from which nine common types were identified, and a number of important thermal bridge details were chosen for each.

Additional Information

Building Envelope Thermal Bridging Guide

This guide from BC Hydro focuses on improving the thermal performance of opaque building envelope assemblies and interface details, providing practical information to meet the challenges of reducing energy use in buildings.

BC Hydro Thermal Bridging Guide

This guide explores how the building industry in B.C. can meet the challenges of reducing energy use in buildings, in part by effectively accounting for the impact of thermal bridging.